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The unsteady creeping motion of a thin sheet of viscous liquid as it advances over a 
gently sloping dry bed is examined. Attention is focused on the motion of the leading 
edge under various influences and four problems are discussed. In the first problem the 
fluid is travelling down an open channel formed by two straight parallel retaining walls 
placed perpendicular to an inclined plane. When the channel axis is parallel to the fall 
line there is a progressive-wave solution with a straight leading edge, but inclination of 
the axis generates distortions and these are calculated. In  the second problem a sheet 
with a straight leading edge travelling over an inclined plane penetrates a region where 
the bed is uneven, and the subsequent deformation of the leading edge is followed. The 
third problem considers the flow down an open channel of circular cross-section (a 
partially filled pipe) and the time-dependent shape of the leading edge is calculated. 
The fourth problem is that of flow down an inclined plane with a single curved retaining 
wall. These problems are all analysed by assuming that a length characteristic of the 
geometry is large compared with the fluid depth divided by the bed slope, and all the 
solutions display extreme sensitivity to the data. 

1. Introduction and governing equations 
The motion of thin viscous sheets down inclined surfaces has received a great deal of 

attention, but this has been almost exclusively concerned with two-dimensional flows 
and especially with wave motion associated with the free surface. A recent reference, 
from which other references may be obtained, is the pa.per by Lin (1974). Three- 
dimensional problems, characterized by a leading edge that marks the boundary 
between the fluid and the dry bed, and whose shape fluctuates during the course of the 
motion, have received very little attention. The fluctuations can occur because of the 
presence of obstacles on the bed, unevenness in the bed surface, or an initial shape 
incompatible with steady motion. The present paper is concerned with a theory of 
such motions. 

It may be easily confirmed by the kitchen experimenter that generation of a straight 
leading edge that remains straight during the course of the motion is exceedingly 
difficult if not impossible. It is tempting to attribute this to instability (in the usual 
sense that infinitesimal disturbances grow until they become significant) and certainly 
for large bed slopes there is reason to believe that this is the source of the difficu1ty.t 
However, the special problems analysed in the present paper suggest that for small 

t If the slope of a plane over which syrup is spreading with an approximately straight leading 
edge is abruptly increased from a very small value to an O( 1) value, the leading edge forms long, 
strikingly uniform fingers. 
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FIGURE 1. Co-ordinate system. 

bed slopes and insignificant inertia the difficulty arises because of extreme sensitivity 
to the data. For example, small non-uniformities in a retaining wall can generate large 
distortions of the leading edge. Moreover, non-uniformities can generate distortions 
that fail to disappear after their source has been left far behind. As an example, uneven- 
ness in the slope of the bed generates distortions that persist long after the leading edge 
has passed on to a region of the bed that is perfectly flat. These two effects, data sensi- 
tivity and persistence, could easily account for the experimental difficulty and consti- 
tute the major qualitative results of the present study. 

There are, of course, serious analytical difficulties associated with a three-dimen- 
sional unsteady viscous flow, so that sweeping simplifications are needed to formulate 
equations that are amenable to analysis. The motion is driven by gravity (surface 
tension, although undoubtedly important in many real situations, is neglected), and 
this acts in two ways. Inclination of the bed tends to drive the fluid down the surface 
in the direction of the fall line, while variations in the depth tend to drive the fluid 
from deep to shallowregions. It follows that if the slope of the bed is small and the liquid 
is shallow (i.e. the slope of the free surface is small) then the driving mechanisms are 
weak, the velocity will be small, and an appropriate Reynolds number can be made 
small enough to justify the neglect of inertia terms. 

The small-slope assumptions have additional ramifications. The velocity in the 
vertical direction (which is almost perpendicular to the bed) will be small, so that 
vertical hydrostatic equilibrium prevails with (figure 1 ) 

p = -pg(z-&-h),  (1.1) 

where & is the height of the bed and h is the depth of the fluid. Moreover, vertical 
velocity gradients will be much larger than horizontal ones, so that the motion in the 
horizontal plane is governed by 

(1.2) o = - p-lvp + v a2qpz2, 
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where q and the gradient operator have only x and y components. Thus 

where F is the component of the gravity vector tangential to the bed. The velocity q 
vanishes at the bed and its first derivative aq/& vanishes at  the free surface in the 
absence of tractions, so that on integrating (1.3) we have 

q = ( fVh- : )  ($z2-Qz-hz++Q2+hQ),  

whence J Q  rQ+h 
which clearly displays the two driving mechanisms alluded to earlier. Since mass 
conservation requires that 

ah+,. ( j-;+hqdr) = 0 
at 

we are led to the fundamental equation governing h, namely 

!7 1 ah - A(h4) = - V .  (h3F) +- . 
12v 3v at 

This equation was previously derived by S. H. Smith (1969) and P. Smith (1969), who 
discuss the underlying approximations a little more carefully. 

In  general, we are concerned with the solution of (1.5) when there are impenetrable 
vertical surfaces placed on the bed. The normal velocity vanishes at  such a surface, 
whence 

gahlan = F.n, (1.6) 

where n is the unit normal. Since there is a boundary layer of thickness O(h) at the 
surface in which horizontal derivatives must be reinstated, the condition (1.6) is tanta- 
mount to assuming that this boundary layer cannot accommodate a significant flux of 
fluid. Although we offer no analysis of the layer to justify this claim, it should be noted 
that the only viscous boundary layers whose fundamental role is other than merely to 
adjust the tangential velocity to zero occur in rapidly rotating flows, magnetohydro- 
dynamics and similar situations for which there are large non-conservative body 
forces. Boundary layers in Hele-Shaw flows are perhaps most similar to the present 
ones, and they are passive (Thompson 1968). For these reasons the condition (1.6) is a 
plausible one. 

At the leading edge the depth vanishes and we shall assume that it is correct to 
impose this condition on the solutions of (1.5), i.e. 

h+O as z+x,(y,t). (1.7) 

The leading edge is undoubtedly a region of non-uniformity and (1.7) can be thought of 
as a ‘minimum singularity’ assumption. It is a fairly reliable rule of asymptotics that 
if the outer solution can be made to satisfy a boundary condition for the inner solution 
then it should be imposed. The adjustment of the flow structure required of the inner 
solution is then minimized and does not have to  be considered in deducing the outer 

25 FLM 81 
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solution to first order. Intimately related to this is the assumption that the region of 
non-uniformity is thin. It will shortly emerge that the horizontal scale of all the prob- 
lems considered in this paper is at  least O(h/a), where a is the bed slope, and the region 
of non-uniformity must be much smaller than this. It is plausible to conjecture that the 
various flow parameters can always be chosen to satisfy this requirement. For example, 
if surface tension must be reinstated close to the leading edge, the size of the region in 
which this is necessary can be made small by making the surface tension small. If the 
slope of the free surface is large in a region characterized only by h, this is small com- 
pared with h/a provided that a is small. It is because our description is not valid too 
close to the leading edge that the difficulty discussed by Dussan V. & Davis (1974) 
concerning the very notion of a fluid continuum within the neighbourhood of a moving 
contact line plays no role. 

A mean velocity q may be defined by 

9 h2F 
9V 3v 

q d z  = - -V(h3)+- .  

Approaching any line along which the depth vanishes there are two possibilities. 
Either 9 --f 0, or Vh-t  co in such a manner that q is not zero, so that 

q-+( -g/9v)V(h3). (1.9) 

The second possibility corresponds to a moving leading edge and it is apparent that the 
mean velocity is perpendicular to the leading edge. It may therefore be anticipated 
that (1.9) is the leading-edge velocity. Of course, Q is parallel to the surface of any 
obstacle placed on the bed because of the condition (1.6), so that in this way we deduce 
the important result that a moving leading edge intersects a solid boundary at right angles. 
In  $ 5  this result emerges as a solvability condition. 

Equation (1.9) implies that close to the leading edge h behaves like the third power 
of distance from the leading edge. This non-uniformity does not appear to be of conse- 
quence, particularly since the associated shear stress is integrable. 

The one-dimensional progressive wave. One-dimensional flow down a plane inclined 
at an angle a to the horizontal is governed by the equation 

(1.10) 

It is well known that there are solutions of this equation corresponding to progressive 
waves of permanent form, and for such solutions 

A = h(s), 6 = X- Ut,  

where U is the wave speed. Of particular significance in so far as the present theory is 
concerned are solutions corresponding to the advance of fluid over a dry bed. Indeed, 
integrating ( 1.10) yields 

( 1 . 1 1 )  
9 ah a9 
3v as 31, 
-h2- = - h 2 - U ,  

and this describes the transition from h = 0 at  s = 0 to a depth h = h, as s -+ - 00 
provided that 

U = gah&/3v. (1.12) 
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This simple problem defines certain natural scales since the fluid depth is O(hm), the 
length of the wave is O(h,/a) and the time it takes to pass a fixed point is O(v/ga2hm). 
These scales reveal that the terms neglected in deducing (1.5) are indeed small provided 

that a < 1, ga2h&/v2 < 1,  

and these inequalities ensure the validity of ( 1  3)  for all the problems discussed in this 
paper. The solution is characterized by a straight leading edge perpendicular to the 
fall line, and we are concerned with perturbations of this solution (not necessarily 
small) generated by a variety of disturbances such as unevenness in the bed surface. A 
number of special problems will be investigated in order to uncover certain general 
principles. 

In  order to obtain analytical results a common asymptotic limit is considered. For 
each problem a natural length L is defined by the geometry (e.g. the channel width) and 
it is assumed that this is much larger than the length hm/a associated with the one- 
dimensional wave. Thus the fundamental small parameter is 

E = hm/aL -g 1, (1.13) 

and on the geometrical scale the one-dimensional wave described by (1.11) looks like a 
semi-infinite slab of fluid of uniform thickness hm. Distortions of the leading edge are 
described on a scale characterized by L, so that the structure close to the leading edge is 
quasi-one-dimensional. Far behind the leading edge, where the structure is two- 
dimensional, h is governed by a linear equation for each of the problems considered, a 
consequence of certain restrictions on the magnitude of the disturbances. Thus the 
equations for both the near field and the far field can be analysed in a straightforward 
fashion, and when matched essentially complete the analysis. 

2. Flow in a rectangular channel 
Consider an open channel formed when two straight parallel walls a distance L apart 

are placed perpendicular to an inclined plane. When the channel axis is parallel to the 
fall line, the one-dimensional progressive-wave solution satisfies the governing equa- 
tion (1.5) and the boundary condition (1.6) at each of the walls, and so describes a 
channel flow. If the channel axis is inclined to the fall line a progressive-wave solution 
still exists, but it is two-dimensional and the leading edge is deformed. The basic goal 
of our analysis is to calculate this deformation. The solution, being steady, is somewhat 
simpler than those discussed in the next three sections and so provides an appropriate 
introduction to the necessary techniques. 

If x is measured in the direction of the channel axis (figure 2), the gravity force can be 
written as 

where /? is a measure of the axis inclination. The boundary condition (1.6) is then 

F = (a,$)s, (2.1) 

ahlay = $ at y = 0, L, (2.2) 

axL/ay = o at y = 0, L, (2.3) 

and the condition that the leading edge intersects a wall at  right angles is 

where the leading edge is described by 
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FIGURE 2. Progressive wave in a rectangular channel. 

In  the physical plane the domain occupied by the fluid changes with time, which is 
mathematically inconvenient. Consequently we replace 5 by the new variable 

8 = 5 - z&, t )  (2.5) 

so that the fluid occupies the region s < 0. Then, defining non-dimensional quantities 

the governing equation becomes, in general, 

where Pl = 1 and F ,  = /3/a for the present problem. The motivation for the scalings 
defined by (2.6) is provided by the one-dimensional progressive wave and it should be 
noted that h, is a depth characteristic of the non-uniform flow far behind the leading 
edge. It will be defined precisely below. 

A progressive-wave solution is one for which 

EL = U f + $ ( g ) ,  E = K(a,g), (2.8a, b )  

and our fundamental concern is calculation of the wave speed U and the shape function 
+, assuming 

6 = h,,,/aL 4 1. 

When ,8/a vanishes, 0 is equal to 6 [cf. (1.12)] and $ is a constant, corresponding to a 
straight leading edge perpendicular to the fall line. For sufficiently small values of 
p/a the solution will be a small perturbation of this one-dimensional wave and it can be 
anticipated that this perturbation increases in magnitude as ,8/u is increased until, for 
suitably large values, the leading edge has an O(1) slope, i.e. 3 = O(l/e). This occurs, in 
fact, when ,8/a = O(e2), so that it is appropriate to consider the limit 

- 

,8/a-+O, e+O, ,8/a = b2, k = O(1) (2.9) 
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and seek solutions corresponding to O(1) deformations. Such a limit is suggested by a 
small perturbation analysis valid when /3/a +- 0, the details of which are not described 
herein, and is justified by the ensuing analysis. 

It is appropriate to define a scaled distance 

Y = € a ,  (2.10) 

so that the duct walls are located at  Y = 0, 1, and seek a near-field solution valid when 
3 = O(1) of the form 

A - ho(3, Y )  +€h,(S, Y )  + O(@),  (2.11a) 

(2.11 b )  

(2.114 

Note that ;d is large, so that axJay is an O( 1) quantity. 
The far field is described on the scale S = O( l), where 

s = €3, (2.12) 

and has the form E - Ho(8, Y )  + €H,(S, Y )  + 0 ( c 2 ) .  (2.13) 

The formulation is completed by noting that the boundary conditions at the walls 

d$/dY = 0, aElaY = at Y = o , i .  (2.14a, b )  

can be written in the form 

The problem for H, is 
i a  aH0 
3 as O = - -  ( H 3  - U0m 9 (2.15) 

with solution Ho = 1.  (2.16) 

On the other hand the problem for h,, after a single integration, becomes 

1 &(i+X;2)ahya3 = )h;-u,h,, 

h,(O, Y )  = 0, 

u, = 6 1  

and this has a solution that matches with (2.16) only if 

namely 

(2.17) 

(2.18) 

(2.19) 

The quasi-one-dimensional structure of the near field implies that it cannot in general 
satisfy the conditions (2.14); there are regions of non-uniformity where Y = O(s)  and 
where 1 - Y = O(s) .  Nevertheless the solution (2.19) is compatible with the conditions 

x;, = 0, ah,/aY = o at Y = 0 , i .  

aHl/as = 0, 

The perturbation depth in the far field satisfies 

with solution HI = kY. 

(2.20) 

(2.21) 
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Considering (2.16) and (2.21), it is therefore apparent that h, is the depth far behind 
the leading edge at the side wall y = 0. 

Continuing, the problem for h, can be written as 

h,(O, Y )  = 0,  lim h,@, Y )  = kY, 
&+-m 

(2.223, c) 

and it is this that determines the shape function xo and the perturbation wave speed 
U,. For ( 2 . 2 2 ~ )  can be integrated by writing it in the form 

and the condition ( 2 . 2 2 ~ )  can be satisfied only if 

x; = 12U1-8kY. (2.23) 

Since xh vanishes at each wall, it follows that 

u, = )k (2.24a) 

and xo = -$k( Y - Y - 4) +constant. (2.243) 

The profile (2.24b) is sketched in figure 2. 
The most striking feature of this solution is the extreme sensitivity to the data that it 

displays. When h,/aL is very small, only a tiny [0(h,/0lL)~] inclination of the channel 
axis to the fall line is needed to generate significant leading-edge deformations. This 
pathological behaviour has its counterpart in each of the problems that we shall 
consider. 

3. Flow over an uneven bed 
Steady solutions of (1.5) corresponding to flow over an uneven bed have been con- 

sidered by P. Smith (1969) and by S.H. Smith (1969). Here the concern is with an 
unsteady flow in which a one-dimensional progressive wave advancing over an in- 
clined plane penetrates a region where the bed is no longer flat, thus causing the leading 
edge to deviate from a straight line. The problem is to describe the history of this 
deviation. The flow is genuinely unsteady, unlike that of 8 2, but the analysis is pursued 
in a very similar fashion. 

The flow is governed by (2.7) with the gravity force given by 

F = (l,O)+af(x, Y )  
- 

(1,0)+a(f f )  
(3.1) x = €Z, Y = q. 

l’ ’I 
L is here a length characteristic of the scale on which the bed deviates from a flat sur- 
fdce and S is a measure of the magnitude of this deviation. h, is the uniform depth far 
behind the leading edge, where f vanishes and the bed is a plane inclined to the horizon- 
tal at an angle a. 

It is appropriate to define a slow time T = sf and then seek a solution for which the 
position of the leading edge is described in the slow variables, i.e. 

21; - “-1Xo(Y,T)+0(1). (3.2) 



Viscous sheets advancing ouer dry beds 

f - f ( x o (  y ,  TI, Y )  

h - ho(T, Y,T)+O(g)  

743 

In the vicinity of the leading edge (T = O( 1)) the argument off(X, Y )  is simplified to 

(3.3) 

and writing 

gives a description which is quasi-one-dimensional : 

where 

This describes a wave with a zero depth at T = 0 and a depth 

31 = 1 + ISfl(X0, Y ) ,  $2 = Sf2(XO, Y ) .  

as S+ -a. 
Far from the leading edge ( S  = O(l/c)) the solution has the form 

% - Ho(S, Y ,  T )  + O(S), 

where S = €3, and essentially the full argument off must be retained, i.e. 

Ho then satisfies the equation 
f-f(S+xo, Y ) .  

Iffor all negative times the fluid is confined to the flat portion of the bed (where f = O ) ,  
it is appropriate to choose Ho = 1 at T = 0. Equation (3 .6)  then describes how H, 
changes along certain world lines, and indeed if xo is known, Ho is known uniquely a t  
any point through which only one world line passes, provided this line originates at 
T = 0. In  particular, Ho is known on any world line originating at T = 0 that reaches 
the plane S = 0, where Ho is known independently to have the value H, given in (3 .5 )  in 
order to match with the leading-edge solution. The two values will be equal only if 2, 
is appropriately chosen. 

The procedure implied by these remarks can easily be carried out when the deforma- 
tion of the bed is small, i.e. IS  4 1.  The solution is then a small perturbation of the one- 
dimensional wave, so that 

x o  6T++&Y,T) 

and H m  N 1 + a[ga$/aT- &fi(&T, Y)1+ O(IS2)* (3.7) 

Moreover, Ho - 1. + SJ1+ 0(a2), 

where 

Since J1 vanishes at  T = 0, the solution of (3.8) on the characteristic originating at 
S = So, T = 0 is 
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The characteristic crossing S = 0 at time T originates at  So = - #T, so that matching 
with (3.7) implies 

The leading edge is initially straight ($ = 0 at T = 0), so that upon integration 

If at i? = 0 the straight leading edge is located a t  3 = 0 it follows, by postulate, that 
both fl and f 2  are identically zero when their first argument is negative. Therefore 

$(Y,T)  =StTdT‘ 0 [ gfl(T‘, Y ) + ( 2 T ’ - O T ) g ( T ’ ,  Y)], (3.9) 

the central result of this section. 
It is interesting to consider the effect of an isolated bump or mound upon the leading 

edge. Consider, for example, a mound whose elevation relative t o  the inclined plane is 
characterized (when 6 is positive) by 

(3.10) 

in the sense that f = - V<D(X, Y). The bed slope defined by (3.10) is continuous and it 
should be noted that an equivalent hollow or depression is obtained by changing the 
sign of <D, which merely reverses the sign of $. Equation (3.9) then provides the follow- 
ing solution for $: 

$ = O  for IY( > 1, (3.1 1 a)  

$ = 0 for IYI < 1, +T < 1-(1-  Y2)6 (3.11 b )  

for IYI < 1, 1 - (1 -  Y2)) .c $T < l + ( l -  Y2)6; ( 3 . 1 1 ~ )  

$ = y ( 1 - i T ) ( 1 - Y 2 ) * ( 1 - 4 Y 2 )  for IYI < 1, &T > 1+(1-Y2).  (3.11d) 

Profiles for several values of T are sketched in figure 3. 
It is noteworthy that the mound generates a ‘permanent ’ deformation of the leading 

edge, namely (3.11d). This grows with time, so that the result cannot be uniformly 
valid and on a large enough time scale the deformation will be much larger than O(6). 
Deviations from (3.11d) can in fact be expected for times T = O(l/e) since (3.4) is 
obtained by neglecting, amongst other terms, 
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Flow direction i - 

T=O T=l 7-= 3 T=6 T =  12 

Flow 

-0.2 -0.1 

Flow direction 
> 

Y 

FIGURE 3. Flow over a bump, T = O( 1). (a) Loca.tion of leading edge at  different times, neglecting 
the defomation. (b)  Deformed leading edge at T = 1. (c)  Deformation at T = 3, 6 and 12. At 
T = 0 and 9 the leading edge is straight. Note that only the half of the profile is sketched for each 
time. 



746 J .  Buckmaster 

and this will play a role on the much longer time scale. The eventual magnitude of the 
deformation depends upon 6 and when this is O(s) the leading edge has an O( 1 )  slope 
during part of its motion, as the following analysis reveals. 

We write 
a = (1,O)+ekf(X, Y ) ,  k = O(l) ,  (3.12) 

which is (3.1) with S replaced by Ek. The leading-edge deformation created by such a 
disturbance is then appropriately described in terms of multiple time scales and has the 

(3.13) 
form - 

where 

XL N ~ - l ~ o (  Y ,  T ,  TI) +xi( Y ,  T, TI) + O( 1 ) s  

TI = BT = e2f. 

The corresponding near-field structure is 

z - ho(% Y ,  T ,  T,) + ehl(3, Y ,  T ,  T,) + O(e2) 

5 N Ho(S, Y,T,T,)+eH,(S, Y,T,T1)+0(8),  
and in the far field 

The function h, satisfies the equation 

" 1 + ( 3 4 2 ] ; ( h : )  = y&:--h,, ax0 
aT 12 

so that ho+(3ax0/a~)+ as zi-+ -a, 

where it must match with the solution of 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

namely H, = 1. (As before, i t  is assumed that at T = 0 the flow is simply the one- 
dimensional wave.) Thus 

x o  = *T + a( y ,  T,), 
where v is at present unknown. 

Turning to perturbation quantities, h, satisfies the equation 

1 8x0 a ax0 

- [ 1 + ( ~ )  12 ] ~ ( 4 h & ) - h $ h 1 + - h 1  aT 

so that as S-+ -a 

a2u +!(?+%) - ~ k f l ( x o ,  Y ) + f k D f 2 ( X o ,  aU Y ) .  "+-iP2 2 aT, aT 

On the other hand, in the far field 

aH, 2aHI -+-- = --- 
aT 3 as 3 a s  

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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which has its counterpart in (3.8). This equation may be integrated along character- 
istics originating at  T = 0, where H, vanishes, so that on denoting the right side of 
(3.21) by G(8, T) (the dependence on Y and Tlis then implicit) it is easily shown that as 
#-PO rn 

(3.22) 

which must agree with (3.20). This can be thought of as an equation for aXJaT. 

simplest way of guaranteeing this is to impose the condition 
Now the key to choosing cr is the requirement that (3.13) be uniformly valid and the 

lim (8xl/aT) = 0. 
T-OO 

(3.23) 

For a mound of finite dimensions, the functionf(X,, Y )  also vanishes in this limit, so 
that in this way the basic equation governing cr is uncovered, namely 

The right-hand side is - 

so that for the mound described by (3.10) 

(3.24) 

(3.25) 

which must be solved subject to the condition that cr vanishes when Tl does, corres- 
ponding to an initially straight leading edge. 

For small values of T, 
-#k(l-4Y2)(1-Y2)*Tl, IYI 6 1, ( 3 . 2 6 ~ )  

l 

and the time-dependent part of (3.11 d )  is recovered. The time-independent 
contained in xl, which we do not calculate. 

The solution of (3.25) is 

12T1 * +1 
= -.$$k (7) I-, d5( 1 - 4.3 (1 - E2)* [ed - 20*/: dt exp (- k)], 

8 = 3( Y - E)2/Tl, 

and for large values of T,, with Y/Tf fixed, 

(3.263) 

part is 

(3.27) 

(3.28) 

so that most of the leading edge, after suffering large distortions, eventually straightens 
out. However, when Y is fixed the large-time behaviour is 

( 3 . 2 9 ~ )  

(3.29b) 
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glk 
FIGURE 4. Flow over a bump, T = O(l/e). 

so that there is a residual disturbance. Profiles obtained by evaluating (3.27) at differ- 
ent times describe the transition between (3.26) and (3.29) and are shown in figure 4. 

In  summary, when the leading edge traverses a mound of diameter L and height 
O(h,), which it does on the time scale T = O(l ) ,  deformations of slope O(E) are gen- 
erated. These deformations continue to grow once the mound has been left behind, and 
on the time scale T = O(l/a) the leading edge has an O(1) slope which ultimately 
decays to zero except for a residual deformation in the region I Y I < 1. 

4. Flow down an open channel of circular cross-section 
The problem discussed in this section concerns a flow that is often observed when 

a viscous liquid is poured from a round-necked bottle. Consider a right-circular pipe 
inclined at  an angle a to the horizontal and down which a small amount of fluid is 
flowing. Specifically, the maximum depth hm (figure 5 )  is assumed to satisfy the in- 
equality 

where R is the radius of the pipe. For such small depths the width L of the fluid is much 
smaller than R, and elementary geometrical considerations imply that 

hm << a2R, (4.1) 

hm/L = O(L/R), (4.2) 
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- Y  

X 

(4 (b)  

FIGURE 5. Flow in a partially filled pipe. (a) Side view. (b)  Cross-section. 

so that because of (4 .1 )  L 4 aR and, furthermore, 8 = hm/aL 4 1. E is the fundamental 
small parameter of the problem, as always. The force F is then given approximately by 

F (a,  - y / R ) g *  (4.3)  

There is a steady solution for which h is a function of y only, and for which (1.5) 
simplifies to 

with solution h = hm-y2 /2R (L2-4y2) /8R .  (4 .4)  

Thus the surface of the fluid is flat. The mean velocity defined by (1.8) has only an 
x component, namely 2 

- ! 9 h 2  = (A) (L2- 4y2)2. 
I - 3 v  3 v  8R (4 .5 )  

These elementary calculations provide all the information that is needed to calculate 
the shape of the leading edge. Bear in mind that on the O(L) scale the leading edge is 
simply a discontinuity in h; moreover the leading edge moves with the limiting mean 
velocity. Thus an intuitively satisfying picture of the motion .is one for which, away 
from the leading edge, h is described by (4 .4) ,  and the leading edge itself is displaced in 
the 5 direction at arate given by (4 .6) .  Mathematically, the leading-edge structure then 
has two roles: it  must smooth out the discontinuity in h and also rotate the vector q 
from an x-wise orientation to a direction perpendicular to the leading edge. The formal 
analysis which confirms this picture proceeds as follows. 

- 
X L  N E - ~ x O (  Y ,  T )  + O( 1) 

We write 

and note that R has the form 

F - (1,O)-(L/aR)(O, - Y)+O(s2) ,  (4 .7 )  

where L/aR is an O(s) quantity. Note that 8xL/ay is O( l) ,  i.e. the formulation permits 
the leading edge to have an O( 1) slope. 

In the neighbourhood of the leading edge 

7i  - h&, Y ,  T) + O(E) ,  

so that 
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FIGURE 6. Leadingedge deformation for pipe flow. 

As with the earlier problems, this is a quasi-one-dimensional wave whose structure is 
modulated on the slow scales Y and T. For large values of -3, h, approaches an 
asymptotic limit 

H, = [3axo/aT]t. (4.9) 

The solution far from the leading edge has the form 

% N H,(S, Y ,  T) -t O(E) ,  S = €3, 

whence (4.10) 

Provided that H i  > aXo/8T, H, does not change along characteristics that originate at 
T = 0,s < 0 and intersect S = 0 a t  positive values of T. Thus if H, is specified initially 
it can be calculated for all positive times at S = 0, where it must agree with the result 
(4.9). In  this way the velocity of the leading edge can be calculated. In  particular, if H, 
is initially described by the steady-state solution (4.4), namely 

H,(X, Y ,  0) = 1 - 4 Y2, 
then a X o p  = +(I - 4~2)2, (4.11) 

which confirms the earlier conjecture that the leading edgeis displaced in the x direction 
at the speed ?jl given by (4.5). The time history of an initially straight leading edge is 
sketched in figure 6. 

For more general initial conditions the situation is more complicated: (4.10) might 
not have a unique solution, for example. It can be plausibly conjectured that the result 
(4.11) is then significant in an asymptotic sense, for large values of T. For it is surely 
reasonable to suppose that far behind the leading edge the solution approaches (4.4) at 
large times whatever the initial data. And this solution is carried throughout the region 
S < 0 by the characteristics defined by (4.10). 
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0 (L) 
FIGURE 7. Flow past a side wall. 

5. Flow past a single side wall 
The fourth and final problem to be examined in this paper is flow over an inclined 

plane upon which is located a single side wall. This wall is not flat and so generates 
unsteady disturbances as the leading edge moves down the bed. 

The co-ordinate system is chosen such that the fall line is aligned with the 2 axis 
(figure 7); then F = (ag, 0). y is defined a little differently from before in that if yo is the 
Cartesian ordinate, then y = yo-p (x ) ,  where the side wall is located at yo = p(x ) ,  
i.e. y = 0. The definition of s is unchanged, i.e. s = x - x L ( y , t ) .  Variables are non- 
dimensionalized in the familiar way (2.6), and at  the same time we write 

p(2)  = (h,/a) P(X), x = €2, € = hm/aL, (5.1) 

so that L is a length which defines the scale on which the wall displacement varies. The 
equation governing the variation of h in the region i j  2 0,s < 0 is then no longer (2.7) 
but rather 

The tangency condition (1.6) becomes 

aX/as is unbounded as s-+ 0, of course, so that at first glance this equation is suspect, but 
the condition that the leading edge intersects the wall at  right angles is 

€PI( 1 + eP'azL/ay) = - az,/aij at i j  = 0, s = 0, (6.4) 

and there is in fact no difficulty. 
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It is appropriate to write 

where T = d, Y = dTj, 

a formulation that permits the leading edge to have an O(1) slope. This is fitting for 
wall displacements as large as those defined by (6 .1) .  Note that the slow variable Y is 
defined differently from that of earlier sections. 

The solution for X must be constructed in two separate regions, as always. CIose to 
the leading edge 

X N ho(S, Y ,  T )  +dh,(S, Y ,  T )  + O(B), 

whence 

This describes the transition from h, = 0 at 3 = 0 to h, -+ 1 as 5 + - co and justifies the 
choice of the first term in (5.6).  Just as for the rectangular-channel problem discussed in 
$2,  the leading-edge solution is not uniformly valid as Y -+ 0, but nevertheless (5 .6)  is 
compatible with the first-order wall conditions 

axo/aY = 0, ah,/aY = o at Y = 0. 

The equation for h, is 

and as 5-t -co 

Far from the leading edge the solution has the form 

Z - 1 + d H 1 ( S ,  Y , T ) + O ( s ) ,  S = ES, 

where H, satisfies the equation 
a2Hl aH, aHl -- - 2 - + 3 -  
aY2 as aT'  

H, must take the value H, at S = 0,  and furthermore the tangency condition is 

aH,/aY = -P' (S+&T)  at Y = 0.  (5.10) 

Suppose that, for all times T less than some value To, that part of the wall that is in 
contact with the fluid is flat. Then 

Hl = 0 at T =To. (6.11) 

Now there is no question of being able to satisfy the system (5.9)-(5.11) for arbitrary 
values of H,. Loosely speaking (5 .9)  can be thought of as a heat equation, S being a 
time-like variable. Since S is negative the specification of initial data a t  8 = 0 is 
therefore analogous to integrating the heat equation backwards in time. This cannot be 
done for arbitrary boundary and initial data, but for given boundary data there is a 
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FIUURE 8. Deformations generated by a wavy wall. The inset shows the nominal location of the 
leading edge at  different times, the corresponding deformation being shown in the main part of 
the figure. 

unique set of initial data for which a solution exists. Thus it is not surprising that (5.9), 
subject to the conditions (5.10) and (5.11) and appropriate boundedness conditions at  
Y = 00 and S = - 00, has only one solution. Thus H, is uniquely determined once P 
is specified and this leads to an equation for the shape function xo. A simple uniqueness 
proof can be given (L. E. Payne, private communication; see appendix) if certain 
assumptions are made about how rapidly the solution dies out at infinity. 

The existence of a solution is established by explicit construction. Consider a periodic 
wall displacement (5.12) 

The solution of (5.9) subject to (5.10) is 

P'(S + $T) = A exp [iw(S + QT)]. 
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FIUURE 9. Deformations generated by an isolated bump on a side wall. 

where the positive sign is appropriate when w is positive and vice versa. Setting this 
equal to H ,  at S = 0 yields 

and this can be used to describe the fluctuations in the position of the leading edge 
generated by an infinite wavy wall. Indeed, the time-periodic solution of (6.13) satis- 
fying the condition 

ax,/aY = 0 at Y = 0 
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where the wall displacement at the leading edge is 

PL = A sin (4T). (6.16) 

Profiles for different values of T are sketched in figure 8. 
Once the solution for a harmonic wall displacement has been obtained, it is a straight- 

forward matter to construct the solution for an arbitrary wall displacement using 
Fourier synthesis. Figure 9 shows a sequence of profiles generated by flow past an 
isolated bump given by 

C(1-X2), 1x1 < 1, P=( 1x1 > 1. 
0, 

Note that the disturbance dies out once the bump has been left behind by the leading 
edge. 

The most striking feature of these results is that a wall displacement of slope O(B) 
leads to leading-edge displacements with an O( 1) slope. 

6. Concluding remarks 
In this paper we have analysed four flows with the common feature that a geometri- 

cal length characteristic of the disturbance is much larger than a length character- 
istic of the depth divided by the bed slope. On a scale defined by the larger length the 
fluid depth is discontinuous at the leading edge; on the smaller scale the leading edge is 
quasi-one-dimensional. The solution of these problems has revealed extreme data 
sensitivity which can be summarized by the observation that, in practice, it  will be 
very difficult to generate a flow with a straight leading edge. The analysis of $2 shows 
that small inclinations of a straight channel to the fall line can create large deforma- 
tions of the leading edge. In  0 3 it is shown that small non-uniformities in the bed slope 
can generate leading-edge displacements that continue to grow long after the irregu- 
larities have been passed until eventually they become large. Similarly, J 5 reveals that 
slight unevenness in a side wall can generate large deformations. Thus although each 
of these flows is apparently stable in the sense that small initial disturbances eventually 
die out, their sensitivity can lead to effects similar to those associated with instability. 

Thanks are due to Professor L. E. Payne, who provided the uniqueness proof in the 
appendix. This work was supported by the U.S. Army Research Office. 

Appendix. Uniqueness proof for the single-wall problem 
It is sufficient to show that the solution to the following problem is identically zero: 

a2H aH a H .  
ay2 as aT 
-- -2 - -3 -  
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aHlaY = O  at  Y = O ;  H = O  a t  T = O ;  

H + O  as X- t -co ;  H - t O  as Y e a .  

Define the non-negative function J ( T )  by 

Then 

i.e. 

and so J is a non-increasing function. But J vanishes at T = 0 and so must be identi- 
cally zero; and therefore H is identically zero. 
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